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Abstract—An algorithm for calculating the vapor–liquid phase equilibrium for 

multicomponent gases is presented. A six-component gas mixture is considered. The algorithm 

for calculating phase equilibrium is based on the solution to the Soave–Redlich–Kwong 

equation of state for real gases. An iteration algorithm for updating phase equilibrium constants 

is used. The total vapor fraction is determined using the solution to the Rachford–Rice equation. 

The difficulties of developing such algorithms are considered in full detail. The derived solution 

is compared with results obtained in the commercial package HYSYS (version 3.2) when the 

Soave–Redlich–Kwong equation is also used. 
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INTRODUCTION 

The calculation of the vapor–liquid phase equilibrium constants for multicomponent 

gases is the central theoretical problem of studying the condensation and evaporation of real 

gas mixtures. Several commercial programs for oil and gas applications, such as HYSYS, 

Chemcad, and PRO/II, have recently appeared, and the calculation of the vapor–liquid phase 

equilibrium for multicomponent gas mixtures is one of the problems that these programs are 

designed to solve. However, due to their closed nature, it is impossible to use any of these 
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programs as a subprogram for calculating any more or less complex process, where phase 

equilibrium changes from point to point, and condensation and evaporation are only part of 

changes occurring in a medium. Attempts to reconstruct algorithms according to which such 

programs work or even any of their informative parts from the materials of open press turn out 

to be unpromising, since authors either conceal the slightest important points or refer to studies 

such as [1], where only some of the equations, rather than a calculation algorithm, are described. 

Below, we will describe the algorithm stated in the abstract and compare the calculation results 

of the program that implements this algorithm with the results obtained in the HYSYS program, 

which is most commonly used in practice. In addition, we will specify some of the major 

difficulties that researchers face when they write such a program on their own for the first time. 

 

EQUATION OF STATE AND INITIAL ASSUMPTIONS 

A typical vapor–liquid phase diagram in the p–T axes for a mixture is presented in Fig. 

1.  

 

Fig. 1. Phase diagram for the mixture from Table 1. The square symbol marks a point at 

which phase equilibrium is calculated (p = 20 bar, T = –80°C). 

 

After the first famous van der Waals equation of state, the studies of real gas mixtures 

have led to more accurate, but, at the same time, more complex equations of state for real gases, 

among which the Soave–Redlich–Kwong (SRK) [2, 3] and Peng–Robinson [4] equations of 

state are most commonly used. Below, we will use the SRK equation: 
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Here, the parameter a takes into account intermolecular attraction forces and b takes into 

account the volume occupied by molecules; α is the dimensionless coefficient defined by the 

expression where the parameter m is calculated by the formula m=0.48+1.574ω–0.176ω2, 

Tr=T/Tc is the reduced temperature; T is the temperature of the system in Rankine degrees; Tc 

is the critical temperature in Rankine degrees; and ω is the acentric factor of a substance, which 

was first introduced by Pitzer et al. [5] and is an indicator of the nonsphericity of the field of 

intermolecular forces. For any pure substance, the constants a and b can be written in terms of 

pressure and temperature at the critical point as cca pTRa
22  and ccb pRTb  , where 

a  and 
b  are the dimensionless Redlich–Kwong parameters, which have values of 

42747.0a  and 08664.0b  [2]. The above equations are applicable for describing the 

phase equilibrium of a pure substance, but they give incorrect values for mixtures. 

Let us point out the limitations for the SRK equation. The SRK equation cannot be applied 

at temperatures below –143°C and pressures above 350 bar, and it cannot be used for describing 

systems with methanol and glycols and for calculating vapor–liquid–liquid equilibrium (from 

the documentation of the HYSYS package). In addition, it cannot be used for calculations near 

the critical point of a mixture. This study considers a dehydrated gas in which there are no 

hydrate formation processes, only one liquid phase forms, and pressure and temperature satisfy 

the specified limitations. Thus, the use of the SRK equation in this study is justified. We 

consider the condensation process; it can be stated that the proposed algorithm is adapted for 

an apparatus in which phase separation occurs: from a gas mixture to a vapor and a liquid. Phase 

transition through the bubble-point curve is calculated in a similar manner. 

 

VARIABLES AND INITIAL APPROXIMATION 

The calculation of the vapor–liquid phase equilibrium means the determination of the 

mixture compositions of both phases at the required point p-T on the phase diagram. It is 

assumed that the liquid phase is originally absent. The mole fractions zi of all n components in 

an original gas mixture, as well as the pressure p and temperature T to which the gas mixture is 

cooled, are considered the known quantities. It is necessary to determine the mole fractions of 

all components in the vapor phase yi and in the liquid phase xi at these p and T. It is evident that 

in a two-phase region we have 
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The calculated total vapor fraction φ in a vapor-liquid medium that forms upon 

condensation is related to zi, yi, and xi as follows: 

  iii xyz  1 ,                                                                             (3) 

where φ is in the interval 10  . We have φ=0 on the bubble-point curve, φ=1 on the dew 

point curve, and 0<φ<1 in the two-phase region. Since it is assumed that phase equilibrium is 

attained at the considered point p-T of the two-phase region, we can assume that the fugacities 

of the ith component of a mixture from the vapor phase to the liquid phase and vice versa are 

identical, i.e. 
ivil ff  . Expressing the fugacity of the ith component in terms of a fugacity 

coefficient and a mole fraction, we derive the equality pypx iiviil  , from which it follows 

that 
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Our problem is to find the phase equilibrium constants Ki; then, the fractions yi and xi can 

be obtained by solving the following equations (12), (13), and (14). 

We use the reduced pressure and temperature for the ith component of a mixture: 

icir ppp /  and 
icir TTT / . Here, T is measured in Rankine degrees, and p is measured in 

pounds per square inch absolute (psia). The conversion of pressure units from kilopascals to 

pounds per square inch absolute and temperature units from Celsius degrees to Rankine degrees 

is performed by the following formulas: 
icic pp *145.0  and 67.4918.1 * 

icic TT , where the 

values of 
icp*  and 

icT *  are specified for each of the gas components (these values in the 

computational model for all of the six components of the gas under consideration are given in 

Table 1). These units are conventionally used in such calculations [1].  

The initial values for the algorithm of the phase equilibrium constants Ki are calculated 

by the Wilson correlation. The Wilson correlation for finding the estimated values of the 

constants Ki appears as [6] 
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SRK EQUATION FOR COMPRESSIBILITY FACTORS 

From the SRK equation of state by substituting RTpVZv  , we can derive a cubic 

equation for determining the compressibility factor Zv for a vapor. In fact, the equality 

RTpVZv   can be regarded as one more equation of state for real gases. For a gas mixture, 

the SRK equation can then be written as  

  0
223

 vvvvvvvv BABBAZZZ .                                           (6) 

The coefficients Av and Bv for a mixture of components in the vapor phase are determined 

using certain rules for mixing. Here, we use the Soave rules [3]: 
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176.0574.148.0 iiim  , kij is the symmetrical matrix containing binary interaction 

coefficients for the components of a gas mixture. In our calculations, to simplify the calculation 

algorithm, we neglect these coefficients on the grounds that, for hydrocarbon mixtures, their 

values are close to zero, and when there are nonhydrocarbon components in the mixture, these 

coefficients affect an increase in the accuracy of calculation, but insignificantly, and no 

nonlinear effects are observed here [7]. Equation (6) can have three real roots in the two-phase 

region. In this case, it is necessary to take the largest root. 

The similar cubic equation for the compressibility factor for a liquid phase can be derived 

in a similar manner to the equation for a vapor. It has the same form 

  0
223

 llllllll BABBAZZZ ,                                             (6a) 

where the coefficients Al and Bl for the liquid phase are determined in a similar manner to Av 

and Bv, replacing y by x in the respective expressions (7): 
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As in the case of the compressibility factor for the vapor phase, Eq. (6a) can also have three 

real roots in the two-phase region. In contrast to the equation for Zv, in this case it is necessary 

to take the smallest root of the three real roots, rather than the largest one. The middle root has 

no physical meaning in both cases. 
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FINDING FUGACITY COEFFICIENTS FOR A VAPOR AND A LIQUID 

Fugacity coefficients for a vapor and a liquid for the SRK equation of state are determined 

by the following expressions: 
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The derivation of these equations is rather cumbersome, and it is not given here for reasons of 

space. Some details of this derivation can be found in [7]. 

 

ALGORITHM 

To calculate the phase equilibrium constants Ki, the method of successive approximations 

to the solution of a problem is used. Mathematically, the problem lies in finding the vector of 

the solution ),...,,( 21 nKKKK   to the equation 

)(KK  ,                                                                                              (10) 

where the vector function   will be specified below. The method of successive approximations 

to the solution of Eq. (10) consists in calculating the sequence of vectors {
sK }, s=1, 2, … using 

the recurrence formula )(1 ss KK  , beginning from a given initial vector 
0K . The 

convergence of the sequence { sK } at s→∞ to the solution K  of Eq. (10) is ensured by the 

estimation 

1)(max 


KD
K

,                                                                            (11) 

where )(KD  is the Jacobian matrix of the mapping   that is calculated at the point K, 

)(KD  is its norm defined through the maximum of the moduli of eigenvalues. Here, Ω is 

some range of the vector parameter K that lies with its boundary in the maximum region of   

where the inequality )(KD <1 holds true, and is invariant with respect to the mapping   

with 0K . It will be recalled that, by virtue of the contraction mapping principle [8], under 

these assumptions, there is a unique solution K  of Eq. (10) (the fixed point of the 

contraction mapping  ), and the error estimation 
011 KKKK ss 

 is valid. In the 
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small neighborhood of the solution K , there is the ordinary expansion 

|)(|)()()( KoKKDKKK  , which at KK   gives 

sss KKDKKK   )()()(1 , KKK ss  , which makes it possible to draw 

inferences about the convergence of the process without calculating the derivative )(KD . 

Indeed, if the matrix )(KD  had eigenvalues that are higher than unity in absolute value, the 

iteration of almost any approximation 
0K  would take us away from the solution at an 

exponential rate (the so-called hyperbolic singular point of the mapping  ), except for the case 

where the approximation 
0K  randomly falls on the proper subspace with the smaller dimension 

that corresponds to eigenvalues lower than unity in absolute value. However, real calculations 

stably show rapid convergence to the solution, beginning from different initial points. 

Therefore, in evaluating convergence, we restrict ourselves only to the comparison of the 

vectors 
sK  by comparing the numbers ||/1 ssss KKK  

 up to values of 10–5. A block 

diagram of the algorithm is presented in Fig. 2. 

Let us now characterize calculations at each stage. 

1. Finding the total vapor fraction. Using the values of zi and Ki, the total vapor fraction 

φ is calculated from the Rachford–Rice equation [9]: 
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where n is the number of components in the system (n = 6 for the mixture from Table 1). The 

Rachford–Rice equation is derived from Eqs. (2), (3), and (4). This equation can have several 

real roots for φ, but, by virtue of equality (3), only the root from the range [0, 1] is meaningful. 

The Rachford–Rice equation is solved by the bisection method. We designate the function of 

finding such a root as ),( Kz . 

2. Finding the molar fractions of components yi and xi for a vapor and a liquid: 

  11  iii Kzx ,                                                                            (13) 

iii xKy  .                                                                                               (14) 

3. Finding the compressibility factors vZ  and lZ  for the vapor and the liquid. We use 

expressions (6) and (6a). 

4. Finding the fugacity coefficients v  and l  for the vapor and the liquid. The fugacity 

coefficients v  and l  for the vapor and the liquid for the SRK equation of state are 

determined by expressions (8) and (9). After calculating the fugacity coefficients, we find the 
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phase equilibrium constants Ki by formula (4) [10]. In the literature, such a technique for 

updating Ki is called the phi–phi method, which, according to [10], is convenient in that it does 

not require any additional information about a substance, unlike the other two frequently used 

methods for updating Ki: gamma–phi and gamma–gamma. 

 

 

Fig. 2. Flow chart of the iterative algorithm for determining the phase equilibrium 

constants Ki for the given mixture composition zi at the pressure p and temperature T 

corresponding to the two-phase region. 

 

GAS MIXTURE UNDER CONSIDERATION 

The composition of a model mixture (the values of zi in Table 1) is very close to the 

composition of natural gas after drying in one of the gas fields in Russia. The physical properties 

of components are taken from the database of the HYSYS package. Figure 1 shows the phase 

diagram for this mixture. At the critical point of the mixture, we have p = 68.29 bar and T= –

75.08°C. 
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Table 1. Composition of a model mixture, pressure and temperature at the critical point, and 

the acentric factor of components 

i Component Chemical 

formula 

p*
c i ,  

kPa 

T*
c i ,  

ºC 

ωi zi 

1 

2 

3 

4 

5 

6 

Methane 

Ethane 

Propane 

Isobutane 

n-butane 

Nitrogen 

CH4 

C2H6 

C3H8 

iso-C4H10 

n-C4H10 

N2 

4640.68 

4883.85 

4256.66 

3647.62 

3796.62 

3394.37 

-82.45 

32.28 

96.75 

134.95 

152.05 

-146.96 

0.0115 

0.0986 

0.1524 

0.18479 

0.201 

0.04 

0.7812 

0.03 

0.02 

0.0048 

0.001 

0.163 

 

DETERMINING THE POINT OF TRANSITION THROUGH THE DEW 

POINT CURVE 

The above algorithm is applicable only to the two-phase region, where 10  . By 

virtue of the fact that Eq. (12) for φ contains the unknown Ki, the error in Ki, which is introduced 

by the use of Wilson correlation (5) in estimating the condition 10  , leads to the fact that 

the algorithm can be erroneously applied to a single-phase medium or, vice versa, that it is not 

used in a two-phase medium (see Fig. 3). In the former case, the region between the solid and 

dashed lines above 5 bar is meant; in the latter case, the region between these lines at p < 5 bar 

is meant. It follows from the figure that the correction is necessary in the first case.  

In the open literature, it is stated that for the dew point curve we have 1/1  ii

n

i Kz  [7]. 

Let us transform the condition to the form 1)(1  iii

n

i yzx , which is reduced to the new 

condition for the point of transition through the dew point curve as follows: 11   i

n

i x , if we 

take into account that zi = yi on the right of the dew point curve. Indeed, the condition 11   i

n

i x  

should be satisfied on the left of the dew point curve, whereas on the right of the dew point 

curve, based on the physics of the process, we have xi=0 (i.e., any liquid is absent). However, 

when the Wilson correlation is used, we have Ki ≠ ∞ and, consequently, on the basis of 

expression (13), xi ≠ 0. Computational experiments have shown that, in the region between the 

solid and dashed lines at p > 5 bar (Fig. 3), the condition 10 1   i

n

i x  is satisfied (in addition 

to the condition 10  ). If the latter condition is not fulfilled and, instead, the condition 
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11   i

n

i x  is satisfied with an error of less than 0.001, we assume that this is the point of 

transition through the dew point curve. After the correction, the point of transition through the 

dew curve at p > 5 bar is determined with an error of less than 1°C. 

 

 

Fig. 3. Comparison of the dew point curves from the HYSYS package (the solid line) and 

from the developed program determining the transformation point by Eqs. (12) and (5), 

Wilson correlation (the dashed line) for the mixture from Table 1. The round point is the 

intersection point of these curves. 

 

RESULTS 

The values of Ki, yi, and xi calculated by the proposed algorithm and the HYSYS package 

at T = –80°C and p = 20 bar (the point is marked by a square symbol in Fig. 1) are given in 

Table 2. 

The largest discrepancies in the values of Ki are observed for nitrogen because of the 

assumption that kij = 0. Using Ki from the third column, it is possible to calculate 

2.4/1   ii

n

i Kz  and 9.31   ii

n

i Kz . Both sums are larger than unity, from which it follows 

that the given point p-T lies in the two-phase region [7]. 
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Table 2. Comparison of results for Ki, yi and xi , obtained using the developed algorithm and 

the HYSYS package at T=-80ºC, p=20 bar for the mixture from Table 1 

i Ki, 

Wilson 

correlation 

Ki, SRK 

equation, 

our code 

Ki, SRK, 

HYSYS 

yi , 

our code  

xi, 

our code 

yi , 

HYSYS 

xi , 

HYSYS 

1 

2 

3 

4 

5 

6 

2.485845 

0.079132 

0.007390 

0.001535 

0.000819 

11.764347 

2.423041 

0.123539 

0.014078 

0.003020 

0.001609 

12.087532 

2.506 

0.1241 

0.01387 

0.003116 

0.001637 

16.35 

0.802051 

0.022830 

0.004878 

0.000307 

0.000035 

0.169898 

0.331010 

0.184802 

0.346500 

0.101799 

0.021833 

0.014056 

0.801825 

0.023040 

0.004948 

0.000327 

0.000037 

0.169824 

0.319901 

0.185669 

0.356655 

0.104850 

0.022540 

0.010386 

 

The quantities φ, Zv, and Zl calculated by the developed algorithm have values of 0.9557, 

0.8571, and 0.0802, respectively, and those calculated by the HYSYS package have values of 

0.9572, 0.8585, and 0.0768, respectively, which gives the difference 0.16, 0.16, and 4.43%, 

respectively. It should be noted that φ=0.96 in spite of the fact that the considered point p-T is 

located deep inside the two-phase region. It will be recalled that by virtue of Eq. (3) we have 

φ=0 on the bubble-point curve and φ=1 on the dew point curve, from which it follows that φ 

decreases with a decrease in T extremely nonlinearly in the case under consideration because 

of hardly condensable components: methane and nitrogen. 

 

 

Fig. 4. Schematic graph of the function f (φ) (the left-hand side of the Rachford–Rice 

equation) for the mixture from Table 1 at T = –80°C and p = 20 bar. The root of interest is in 

the interval [0,1]. 
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Figure 4 shows a schematic graph of the function for the mixture from Table 1 for the 

considered point p-T, where f (φ) is the left-hand side of the Rachford–Rice equation. Because 

this function is not defined at the points  11  iK , the number domain is divided into 

subdomains: (1) )]1[;( 1

4

 CHK , (2) )]1[;]1[( 11

24

  NCH KK ,  

(3) )]1[;]1[( 11

1042





  HCnN KK , (4) )]1[;]1[( 11

104104







  HCisoHCn KK ,  

(5) )]1[;]1[( 11

83104



  HCHCiso KK , (6) )]1[;]1[( 11

6283

  HCHC KK ,  

(7) );]1[( 1

62
 

HCK . The number of subdomains is n + 1. The solutions of the Rachford-

Rice equation are the following values: –0.1985, 0.9557, 1.0018, 1.0058, and 1.1054, but only 

the solution 0.9557 is meaningful by virtue of Eq. (3). It can be seen that the expression for the 

right boundary of subdomain 3 includes K for the most easily condensable component, n-C4H10; 

this explains the presence of the range [0, 1] in the given subdomain. 

 

CONCLUSIONS 

The proposed algorithm for calculating the vapor–liquid phase equilibrium for 

multicomponent gases is presented in sufficient details to write a computational subprogram. 

The results of calculation by the developed algorithm agree with the results from the 

commercial program HYSYS with an accuracy of several percent. Such a program is 

indispensable in calculating real processes that occur in gas separators (it is where this program 

has been used), in the perforated zones of gas–condensate wells, and in the units of gas-

processing plants, in calculating emergency situations in a gas transport network, etc. 
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NOTATION 

Ab, Ap – coefficients in the SRK equation; 

a – coefficient in van der Waals-type equations of state; 

Bp – coefficient in the SRK equation; 

b – coefficient in van der Waals-type equations of state; 

f – fugacity, kPa; 

K – phase equilibrium constant; 

ki j   – matrix of binary interaction coefficients for a mixture; 

m – parameter in the SRK equation; 

n – number of components in a mixture; 

p – static pressure, bar or psia; 

p* – static pressure, kPa; 

R – specific gas constant, J/(kg K); 

T – static temperature, ºR; 

T* – static temperature, ºC; 

V – specific volume, m3/kg; 

x – mole fraction of a liquid phase after condensation; 

y – mole fraction of a vapor phase after condensation; 

Z – compressibility factor; 

z – mole fraction of a vapor phase in the original mixture; 

α – coefficient in the SRK equation; 

λ – compression ratio; 

Φ – fugacity coefficient; 

φ – total vapor fraction; 

ψ – vector-function of contraction mapping; 

Ωa – dimensionless Redlich-Kwong parameter; 

Ωb – dimensionless Redlich-Kwong parameter; 

ω – acentric factor. 

SUBSCRIPTS AND SUPERSCRIPTS 

0 – initial value; 

c – critical parameter; 

i, j – component numbers; 
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l – liquid phase; 

r – reduced parameter; 

s – iteration number; 

v – vapor phase. 
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